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Abstract The design of physical (plant) and control aspects
of a dynamic system have traditionally been treated as
two separate problems, often solved in sequence. Optimiz-
ing plant and control design disciplines separately results
in sub-optimal system designs that do not capitalize on
the synergistic coupling between these disciplines. This
coupling is inherent in most actively controlled dynamic
systems, including wind turbines. In this case structural and
control design both affect energy production and loads on
the turbine. This article presents an integrated approach
to achieve system-optimal wind turbine designs using co-
design, a design methodology that accounts directly for the
synergistic coupling between physical and control system
design. A case study, based on multidisciplinary simulation,
is presented here that demonstrates a promising increase
(up to 8%) in annualized wind turbine energy production
compared to the results of a conventional sequential design
strategy. The case study also revealed specific synergistic
mechanisms that enable performance improvements, which
are accessible via co-design but not sequential design.
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Nomenclature

Py, Rotor power, W

v Instantaneous wind speed, m/s

v; Cut—in wind speed, m/s

Vo Cut-out wind speed, m/s

Xp Plant design vector

T, Rotor torque, N-m

T, Generator torque, N-m

n Gear ratio

J, Rotor inertia, kg-m?

Jg Generator side inertia, kg-m?

B, Rotor torsional damping, N-m/rad/s
By Generator side torsional damping, N-m/rad/s
Q, Rotor speed, RPM

Qn Speed on high-speed side (Generator), RPM
B Blade pitch angle, deg

H; Tower height at the rotor hub, m

R, Turbine rotor radius, m

Ry, Turbine blade hub radius, m

D, Turbine rotor diameter, m

Dy, Turbine blade hub diameter, m

Cp Rotor power coefficient

Co Rotor torque coefficient

A Blade tip—speed ratio

P Air density, kg/m3

AEP Annualized energy production, kW-h

1 Introduction

Wind energy is proving to be a promising source of renew-
able energy, complementing conventional energy systems to
meet global energy demands. It is currently one of the fastest
growing renewable energy sources (DOE 2008). Modern

@ Springer

www.manaraa.com


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00158-015-1308-y-x&domain=pdf
mailto:adeshmu2@illinois.edu

16

A. P. Deshmukh, J. T. Allison

wind turbines are large, flexible structures operating in
uncertain environments. Because larger wind turbines have
power capture and economical advantages, the typical size
of utility-scale wind turbines has increased substantially
over the last three decades (Quarton 1998; DOE 2008). This
increase in scale has led to increased loads on wind tur-
bine structures. This, combined with uncertain conditions
and demand (among other factors), has resulted in many
unsolved challenges associated with improving the quality,
reliability, and economical competitiveness of wind energy
extraction. Many of these challenges are connected to the
interface of mechanical and control system design for wind
energy systems. A large body of work exists that is devoted
to maximizing energy extraction through optimal control
system design (in particular, rotor speed control and/or
blade pitch control). Engineers have also studied optimal
wind turbine physical (plant) design. These two aspects of
wind turbine design (plant and control) are closely interre-
lated, but so far have largely been treated as independent
activities. The conventional sequential approach of plant
design followed by control design will not yield system-
optimal results.

This article presents an integrated approach to achieve
system optimal wind turbine designs through combined
plant and control co-design, accounting for the synergistic
coupling between mechanical and control system aspects of
horizontal axis wind turbine (HAWT) design. A compari-
son is also provided between co-design and conventional
sequential design of HAWTs.

The paper is structured as follows. Section 2 introduces
the performance characteristics of the HAWTSs and reviews
the relevant literature. This is followed by an explication of
co-design formulations in Section 3. The co-design problem
for wind turbines is then introduced in Section 4, and results
and discussion are presented in Section 5.

2 Performance characteristics of HAWT
and previous work

Consider the model for wind turbine rotor power, P,,, given
by:

_ 1 2.3
Py(v) = 5Cp (k. )om R (1)

where C,(-) is the power coefficient. C(-) is a nonlinear
function of blade tip speed ratio A (the ratio of blade tip
speed and wind speed: A = R,2,/v) and blade pitch angle
B. The air density is p, R, is the rotor radius, €2, is the
rotor speed and v is the wind speed (assumed here to be uni-
form over the entire swept rotor area). For a given physical
turbine design and wind speed, the power capture maxi-
mization problem reduces to tracking the optimal power
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coefficient (C)p, Opt), by controlling the blade-tip speed ratio
(via generator torque) and blade pitch angle. As shown in
Fig. 1, for each wind speed there exists a point on the HAWT
rotor torque-speed map that corresponds to the optimal
power coefficient.

The operating regimes for wind turbine systems have tra-
ditionally been categorized into three operational zones (ref.
Fig. 2), Zone 1: below cut-in wind speed (i.e., speeds below
the minimum required to produce useful power), Zone 2:
between cut-in and rated wind speeds, Zone 3: between
rated and cut-out speed (cut-out speed is the speed at which
turbine operation must be modified to prevent damage), and
Zone 4: above the cut-out wind speed. Wind turbines are
often shut-down in Zone 4 to prevent damage due exces-
sive wind loads. A range of performance objectives can be
identified that apply to one or more of these zones:

1. Maintaining the wind power at rated for speeds greater
than rated (Zone 3);

2. Maximizing the wind harvested energy in the partial
load zone as long as constraints on speed and captured
power are met (Zone 2);

3. Ameliorating load variability to improve mechanical
and structural system resilience (Zones 2 and 3);

4. Meeting strict power quality standards (power factor,
harmonics, flicker, etc.) (Zones 2 and 3);

5. Transferring the electrical power to the grid at an
imposed level across a wide range of wind velocities
(Zone 3).

When designing the wind turbine for maximum energy
production (objective 2 above), an important metric to
consider is Annualized Energy Production (AEP). AEP
accounts for the variability in the wind over time by consid-
ering the wind speed probability distribution at a particular
site. AEP can be interpreted as the expected annualized
energy output from a wind turbine for a given wind speed
distribution and a HAWT design. This wind speed distribu-
tion can be modeled using one of two distributions that are
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Fig. 2 Different operating
zones of a wind turbine
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considered to be most appropriate for wind speed: Rayleigh
distribution or Weibull distribution (He et al. 2010). In the
work presented here, a two parameter Weibull distribution
was used:

p =5 (2@ @)

where v is the wind speed and k and ¢ are Weibull param-
eters. Based on this distribution, the Annualized Energy
Production (AEP), in Wh/yr, can be quantified as:

v k okl
AEP = 8760 x / Py ()~ (3) e ay 3)
v c \c

where v, is the cut-out speed, v; is the cut—in speed, and
8760 is the total number of hours in a 365 day calendar
year. Figure 3 illustrates AEP contours for a particular wind
turbine as a function of rotor diameter. This chart indicates
the achievable AEP for a wind turbine of a particular power
rating operating at certain capacity factor. The capacity fac-
tor of a wind turbine is the ratio of actual output over a
period of time to maximum potential output (i.e., if the tur-
bine could operate at full rated capacity indefinitely). Rated
power is the nameplate maximum power capacity of the
wind turbine.

Please note that two distinct types of wind energy system
design problems are addressed often in the design literature:
1) individual wind turbine optimization, and 2) wind farm
layout optimization (e.g., Chowdhury et al. 2010, 2012,
2013a, b; DuPont and Cagan 2012; Chen and MacDonald
2012, 2014; Lu and Kim 2014). The scope of this article is
limited to individual wind turbine design optimization. The
following subsections will review individual wind turbine
optimization studies in the existing literature.

2.1 Wind turbine structural design
Optimal structural design for wind turbines is tradition-

ally concerned with the design of rotor (including blades)
and tower. A significant body of research can be found

A 4
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v, m/s

on blade design for improved efficiency and energy cap-
ture (Giguere et al. 1999; Benini and Toffolo 2002; Jureczko
et al. 2005). Studies pertaining to optimal tower design
include tower mass minimization (Yoshida 2006; Nicholson
2011), vibration reduction (Uys et al. 2007) and stiffness
maximization (Negm and Maalawi 2000).

Tower mass correlates strongly with structural system
cost. Mass and cost reduction competes with the need to
construct taller towers to improve energy capture. Increas-
ing height while targeting lower mass designs results in
lighter-weight towers with significant elastic compliance.
This increased compliance intensifies the risk of aeroelas-
tic instabilities, adding to design and reliability challenges,
and hindering efforts to improve energy capture (Holley
2003). The coupling between structural dynamics and con-
trol of the turbine and generator, which is stronger for taller
more compliant towers, motivates the investigation and use
of integrated design approaches that address structural and
control system design simultaneously to account for (an
even capitalize on) control-structure interaction.

1500 fror—r—r Tt
&> Capacity Factor (%) o !
1400 p| & AEP (kWh/yr) SN U
/ = — ~ (\g v (\l
o >
1300 g 3
2 /=

1200
1100
1000 | |

900

o J
ﬁmé~», =

800EREE 7 % 7~ :
5EE8/5 /D

700 Q\Qo« ;;9 By » >, b9'b( 1

600 /63,\,

500, ‘ ‘ R
30

40 50 60 70 80 90
Rotor Diameter (m)

Rated Power (kW)

Fig. 3 AEP contours for a particular wind distribution for Weibull
parameters: k = 1.91, ¢ = 6.80, vpeqn = 6.03 m/s, generated using
HARP-Opt tool (Sale 2010)
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2.2 Optimal control for wind turbines

The key concept behind energy maximization via optimal
control is to ensure that optimal power production is main-
tained at each time step for current wind conditions. Based
on the model presented in (1), this is achieved by main-
taining a maximum power coefficient (Cp Opt) for all wind
speeds in Zone 2. This can be viewed as a control prob-
lem in which blade pitch angle (8) and rotor speed (€2, in
turn affecting A) are controlled to maintain desired C . The
blade pitch control modifies the performance of the system
by affecting rotor aerodynamics directly. Rotor speed can be
controlled indirectly via generator control, and can be var-
ied to achieve C, opt a8 shown in Fig. 1. In addition, there
exists a power conditioning control system that operates on
the grid connection subsystem to smooth out fluctuations in
generated power. These control subsystems are depicted in
Fig. 4. This investigation focuses primarily on variable rotor
speed control.

Many types of variable speed control have been presented
in the literature. Thiringer and Linders (1993) performed an
early investigation of power capture maximization via rotor
speed control in a variable-speed, fixed-pitch machine con-
figuration. The variable speed control works by modulating
the generator speed (and hence the rotor speed) based on
the input wind speed to the turbine. Unfortunately, accurate
measurement of instantaneous wind speed is difficult. One
sensing strategy involves placing an anemometer on top of
the nacelle. This location is downstream of the blade, so the
wind speed ahead of the rotor can not be measured accu-
rately at this location. Successful C), opt tracking requires
better estimates of free stream wind speed.

Another strategy for measuring the wind speed in front
of the rotor accurately, ahead of time, is to use light
detection and ranging (LIDAR) (Scholbrock et al. 2013).
This method is fairly successful for rotor speed control
when wind speed variation is gradual, but its accuracy
suffers under turbulent wind conditions. Another alterna-
tive called maximum power point tracking (MPPT) does
not rely on wind speed prediction (Munteanu et al. 2008,
pp- 76-77). In this approach the rotor speed reference is
modified by a variation A€, that is based solely on a

Fig. 4 Main control subsystems
of wind turbine

corresponding change in power P,,. The sign of % indi-

cates the position of the operating point with respect to
the maximum of P, (€2,). The rotor speed reference is
adjusted linearly with a rate proportional to this derivative,
with a hope that the system evolves to optimum, where
g%“r’ = 0. While this method is easier to implement, it is
known to result in significant load fluctuations, shortening
component lives. Most previous efforts reported in the
literature have been focused on individual wind turbine
design disciplines or objectives, such as optimal control
for power production, control for load alleviation, or struc-
tural design (Maalawi and Negm 2002; Xudong et al. 2009;
Soltani et al. 2011),

Model Predictive Control (MPC) is another promis-
ing approach for optimizing systems with slowly varying
dynamics. MPC is very convenient for systems with actu-
ator and path constraints. It has been extended to wind
power maximization (Dang et al. 2009, 2010; Burnham
2009; Kusiak et al. 2010). Faster versions of MPC (Wan
and Kothare 2003; Wang and Boyd 2010) have also been
proposed recently that can be applied to systems with fast
varying dynamics.

The above studies focus on rotor speed or torque con-
trol. An alternative strategy is to control blade pitch (Stotsky
and Egardt 2013; Boukhezzar et al. 2007; Muljadi and
Butterfield 2001). For example, Namik and Stol (2011) pro-
posed a method based on individual blade pitch control that
improved power output performance for onshore and off-
shore wind turbines. They showed that using individualized
blade pitch control enhances wind disturbance rejection,
helps reduce structural tower loads, and improves power
capture.

2.3 Multidisciplinary design optimization of wind
turbines

Optimizing engineering systems with respect to just one
discipline (e.g. structures, aerodynamics, control systems,
etc.) does not produce the best possible system per-
formance when interdisciplinary interactions are present.
This phenomenon has been well-studied by the multidis-
ciplinary design optimization (MDO) research community,
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and numerous MDO design methodologies have been devel-
oped that account for multidisciplinary design coupling
(Cramer et al. 1993; Sobieszczanski-Sobieski and Haftka
1997; Martins and Lambe 2013). HAWTSs are good exam-
ples of multidisciplinary systems; aerodynamic loads pro-
duce structural blade and tower deflections, and structural
deflections influence aerodynamic loads. These aeroelas-
tic effects are further coupled with generator dynamics and
control system effects. Several recent studies have utilized
MDO for wind turbine design (Zakhama and Abdalla 2010;
Forcier and Joncas 2012). For example, Ashuri et al. (2014)
optimized the rotor and tower simultaneously, including sat-
isfaction of relevant aerodynamic and structural constraints.
This study also identified the need to include controller
parameters as a part of the design optimization process to
reduce the levelized cost of energy (LCOE). Accounting
for the interaction between aeroelasticity and control sys-
tem design is an emerging area of HAWT research, and is a
primary focus of this article.

2.4 Co-design as MDO

Addressing either control system or plant design alone
without considering the potential synergy between these
domains will not lead to the best possible system perfor-
mance. In practice, control systems often are designed after
physical system design is complete (i.e., sequential design),
with limited interaction between mechanical and control
system engineers. Whether in research or practice, plant and
control design decisions should be made simultaneously to
support exploration of true system performance limits. Inte-
grated design methods, often termed co-design methods, are
being developed that produce system-optimal designs by
accounting fully for the coupling between plant and control
system design (Fathy et al. 2001; Allison 2013; Allison and
Herber 2014; Allison et al. 2014).

In the context of wind turbine system design, there
is a strong need to solve multidisciplinary design opti-
mization problems involving integrated aero—servo—hydro—
elastic analyses, as identified by Jonkman (2009), to obtain
system-optimal designs. Significant advancements in wind
energy system performance and economic competitiveness
require design methods with tighter integration between
physical system (plant) and control system design at a much
earlier phase in design process. Co-design is an important
strategy for investigating and understanding mechatronic
system performance limits, and is a practical means for
exploiting synergistic relationships to improve performance.
Co-design may also be viewed as a special case of MDO,
where one of the coupled disciplines is control system
design, and physical system design is addressed using one or
more disciplines (see Allison et al. (2014) for a comparison
of several MDO and co-design formulations). The following

section details the co-design formulations that are relevant
to the HAWT investigation presented here.

3 System co-design

Co—design is a class of design optimization methods for
actively-controlled dynamic systems. Design of physical
systems and their associated control systems are often cou-
pled tasks; design methods that manage this interaction
explicitly can produce system-optimal designs, whereas
conventional sequential processes (i.e., plant design fol-
lowed by control design) may not (Reyer et al. 2001). In this
section, we review the sequential design process, followed
by a discussion of two co—design formulations: nested and
simultaneous.

3.1 Sequential system design

In design practice, the sequential design approach is used
most often when developing actively controlled engineering
systems. This involves designing the physical system first,
and then designing the control system without modifying
the plant design. When optimization is used, the sequential
approach produces optimal solutions with respect to individ-
ual disciplines, plant and control design, but normally will
not produce a system-optimal solution. Sequential design
strategies do not account fully for plant-control design
coupling, so are not considered to be co-design methods.
The mathematical formulation for sequential system design
includes both the plant and control design optimization
problems. Here the plant design optimization problem is
formulated as follows:

mxli)n ¢ (&), xp)
subject to:  gp(&(1),xp) <0 @
where: £(1) — f(£(1), xp) = 0.
where, x, is the vector of plant design variables, ¢ (-) is the
plant design objective, gp(-) is the vector of plant constraint
functions, &(¢) are time dependent system states, and f(-)
represents the passive system dynamics that need to be sat-
isfied by the states &(¢). The solution to Prob. (4)—i.e., the
optimal plant design vector xp, —is used as the basis for
the optimal control design problem. The objective and con-
straint functions in the optimal control problem depend on

Xp,., but its value is held fixed during the solution of optimal
control problem:

rr;i‘n ¢(£(t)s Xe, Xp*)
subject to:  gp(£(1),Xp,) <0 ®)
where: é(t) — (@), X¢, Xp,) = 0.
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where, X, is used here to represent control system design
variables in a general way. These variables could take the
form of a set of feedback gain variables for a given control
system architecture, or the form of function-valued control
input trajectories u(z).

The sequential design problem may be formulated in
several ways; the problems above illustrate one possible
formulation. One important difference between formulation
strategies is the nature of the objective function used in
each problem. Allison and Herber (2014) presented a tax-
onomy of sequential design formulations; the plant design
formulation here is Type 1 under this taxonomy. More
specifically the plant design objective accounts only for pas-
sive plant dynamics, but is based on the overall system
design objective function. In much of the literature a dis-
tinct objective function is formulated for the plant design
problem. In many previous design studies, the plant and
control design objectives are treated as distinct, forming
a multi-objective optimization problem. In most of these
cases, however, the plant design objective is actually a
simplified approximation of the control design objective,
adjusted to be congruent with design paradigms that are
embraced by mechanical or structural design engineers.
These proxy plant objectives are often static or pseudo-static
performance metrics that do not account fully for system
dynamics.

3.2 Co-design formulation and solution fundamentals

The formulation presented here involves a single system
objective function that is used consistently across both plant
and control design domains. Here we assume that this objec-
tive function depends on control and state trajectories, e.g.,
it is of the form ¢ (-) = t;F L(&(t), Xc, Xp)dt, where L(-) is
a Lagrangian function, and #y and 77 define the time horizon
of interest. System optimality requires that a consistent sys-
tem design objective is applied across both plant and control
design domains. It may be that the system design problem
is inherently multi-objective; if this is the case, then all sys-
tem objectives should be applied consistently across plant
and control design problems.

In more complete co-design formulations, the plant
design depends on state. For example, stress values in a tur-
bine tower or blades depend on structural vibrations that
are characterized by system state. While both the objec-
tive function and constraints will depend directly on state,
only the objective function will depend directly on control
design. Plant constraints, however, will depend indirectly on
control design since state trajectories are influenced by con-
trol design. From these observations it can be concluded that
many co-design problems exhibit bi-directional coupling;
i.e., plant design depends on control design, and vice versa.
One important consequence of plant constraints dependance
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on state is the need to include plant constraints in the con-
trol optimization problem. If plant constraints that depend
on state are omitted from control optimization formulations,
a feasible system design may be impossible to identify.

Several options exist for solving the optimal control
problem. A classical or ‘indirect’ approach is to apply opti-
mality conditions—such as Pontryagin’s Maximum Princi-
ple (PMP) (Pontryagin 1962; Bryson and Ho 1975)—and
then solve for the optimal control trajectory u,(¢) that min-
imizes ¢ (-). Application of optimality conditions produces
a two—point boundary value problem (TPBVP). In some
cases this problem can be solved analytically to produce
a closed-form solution, but this is only possible in sim-
pler cases. If a closed-form solution cannot be obtained, the
TPBVP often can be solved numerically. This approach is
therefore known as an ‘optimize—then—discretize’ approach,
since optimality conditions are applied first to obtain a
BVP, which is then discretized and solved (Biegler 2010).
One significant challenge in utilizing indirect optimal con-
trol methods in co-design is the need to satisfy inequality
plant constraints. This is not possible in the general case. In
addition, when plant design is part of an optimization prob-
lem, it can be difficult to obtain the derivatives needed to
form and solve the TPBVP. Other optimization methods are
needed that are more naturally suited for solving co-design
problems.

Optimal control problems may also be solved using
direct methods, where an infinite-dimensional optimal con-
trol problem, such as the one given in Prob. (5), is ‘tran-
scribed directly’ into a finite-dimensional nonlinear pro-
gram (NLP). The discretized optimization problem can then
be solved numerically using appropriate NLP algorithms,
and can accommodate inequality plant constraints and plant
design variables easily. This optimal control approach,
known as Direct Transcription (DT) (Biegler 2010; Betts
2010), is classified as a ‘discretize—then—optimize’ method,
since discretization is performed before optimization. It was
first applied to co-design problems by Allison et al. (2014).

3.2.1 Nested co—design

Allison and Herber (2014) identified the nested co-design
formulation as a special case of the Multidisciplinary
Design Feasible (MDF) formulation. This formulation has
two loops: an outer loop that solves the plant design opti-
mization problem, and an inner loop generates the optimal
control for each plant design considered by the outer loop.
The outer loop formulation is:

n}}li)n @+ (Xp) (6)

subject to:  gp(xp) < 0,
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where x,, is the plant design vector, gp(-) are the plant
design constraints, and ¢, (-) is an optimal value function
that depends only on xy,. This optimal value function is eval-
uated by solving the inner loop optimal control problem,
i.e., for a given plant design, it finds the optimal control
and returns the objective function value. Note that the same
objective function is used for both the inner and outer loops;
the difference is that for every objective function evaluation
in the outer loop, the optimal control for the candidate plant
design is found and held fixed. More specifically, for every
outer loop function evaluation, the inner loop is solved for
the optimal control design vector Xc,:

H}l(i.Il ¢(E (t)s XC7 Xp)
subject to:  gp(&(1),xp) <0 @)
where: é(t) — (&), Xe, xp) = 0.

As can be seen from above formulation, the plant design
is held fixed during the inner loop solution. Plant design
constraints gp(-) are imposed in both loops to ensure
system-level design feasibility. As with sequential system
design, the optimal control problem must be solved using an
optimization method that can accommodate inequality plant
design constraints.

3.2.2 Simultaneous co-design

The simultaneous co-design problem formulation is:
min ¢ (&(1), X, Xp)
Xp.Xc

subject to:  gp(&(1),xp) <0 ®)
where: £(1) — f(£(1), Xe, Xp) = 0.

The solution to Prob. (8) yields the system-optimal
design because it accounts for all dynamic system inter-
actions and plant-control design coupling, resulting in a
minimum ¢ (-) that is lower than what could be achieved
using the sequential approach. This formulation is often
referred to as the simultaneous co-design method, as plant
and control design decisions are made simultaneously.
Mathematical equivalence can be demonstrated between the
simultaneous and nested co-design formulations, as long as
the objective functions are the same (Fathy et al. 2001) and
plant constraints are satisfied in the inner loop of the nested
problem (Allison and Herber 2014).

3.3 Direct transcription

Conventional optimal control methods based on Pon-
tryagin’s Maximum Principle (1962) take an ‘optimize—
then—discretize’ approach, where optimality conditions are
applied to generate a closed—form solution (possible only in
limited cases), or a boundary value problem that can then

be discretized and solved for the optimal control trajecto-
ries. Direct Transcription (DT) takes the inverse approach:
the optimal control problem is discretized first, and the
resulting nonlinear program (NLP) is solved using a stan-
dard NLP algorithm (Betts 2010; Biegler 2010). DT is
a ‘discretize—then—optimize’ approach that transcribes an
infinite—dimensional optimal control problem into a large
sparse finite dimensional NLP. State and control trajecto-
ries trajectories are discretized over a finite number of time
intervals, and these discretized trajectory representations are
part of the set of optimization variables. The differential
constraint that governs system dynamics is replaced by a
finite set of algebraic defect constraints. These defect con-
straints can be formed using any standard numerical collo-
cation method, such as implicit Runge-Kutta (IRK) methods
or Gaussian quadrature. The trapezoidal method, an IRK
method, is used in the implementations here. Allison et al.
(2014) introduced an extension of DT for co-design prob-
lems, including an analysis of changes in problem structure.
A DT co-design formulation based on this work, using the
trapezoidal collocation method, follows:

n;—1

min L(xp, &;,u)h;
y=xXp,E,U P
subjectto: ¢(xp, U, E) =0 )

gp(xp, E) S 0

where n; is the number of steps in the time discretization,
E =18, &, - En,]T is the matrix of discretized state
variables (row i corresponds to the state at time #;), £ () are
the defect constraint functions imposed to ensure that = sat-
isfies system state equations, U = [u, up, ---, u,]t is
control input matrix, and h; is the i™ time step size. The
summation is a discretized approximation of the integral
system objective function made using a simple quadrature
method. The NLP in Prob. (9) can be solved using stan-
dard gradient based optimization algorithms. An important
advantage of DT to emphasize here is its parallel nature;
all defect constraints are independent, enabling massively
parallel implementations. With background in co-design
and DT established, the subsequent sections will discuss the
wind turbine co-design problem and results.

4 Wind turbine co—design

The design of a wind turbine system in conceptual stages is
fundamentally multidisciplinary, requiring consideration of
the structural design of tower, blades and drive-train, as well
as blade aerodynamic design. Traditionally, the structural
and aerodynamic design is done in tandem over multiple
iterations between the corresponding teams. However, the
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control system design has always been performed after the
physical plant design is completed. As pointed out in earlier
sections, this sequential design strategy results in subopti-
mal system designs. To improve system performance and
economic competitiveness, we propose the use of a novel
co—design formulation that is truly multidisciplinary in
nature, considering aero—servo—elastic interactions through-
out the design solution process. The end goal of this design
optimization is to find the optimal plant geometry and
open-loop control strategy that maximizes AEP.

4.1 System design formulation

As a first step, consider the problem of maximizing AEP
only with respect to plant design. Later we will intro-
duce an optimal control formulation, and then an integrated
co-design problem formulation. The objective in the plant
design optimization problem is to maximize the AEP while
satisfying plant constraints by choosing the appropriate
blade and tower geometry.

max AEPv(t), Py,(v))
Xp
subject to: Agxp < 0
gp(E(),xp) <0 (10)
0 <x; <xp <Xy
where: £(1) — f(£(1), xp) = 0

where x,, is the plant design vector and AE P (-) expression
is as defined in (3). The AE P(-) here implicitly depends
on xp through the power Py, (1). Finally, £(¢) are the sys-
tem state trajectories that satisfy the the differential equation
é(t) — f(&(¢), xp) = 0 which models the dynamics of the
wind turbine system, consisting of multiple bodies.

These multi-body dynamic equations are implemented in
FAST, a software tool developed by the National Renew-
able Energy Laboratory (NREL) for evaluating aeroelastic
wind turbine behavior (Jonkman and Buhl 2004). FAST
relies internally on AeroDyn, an aerodynamic analysis mod-
ule that predicts aerodynamics loads acting on turbine
blades due to incoming wind using Blade Element Theory
(Moriarty and Hansen 2005). These loads are then utilized
within FAST for multi-body dynamic analysis.

The derivation of the equations used in FAST is based on
the standard Kane’s system of equations approach (Bajodah
2005):

Clq.)q +1£(q.q.1) = 0. Y

After rearranging the terms in (11) and defining & = [q ¢]”
as the state vector, we can write the system dynamics in
the form: é(t) — f(§(2), xp) = 0. Table 1 defines the first
four states, g;. These states correspond to a simplified set of
mechanical degrees of freedom chosen for this case study.

@ Springer

The remaining four states are the time derivatives of first

four.
The physical design vector Xy, is defined as:

Xp = [tw1, tw2, tw3, twa, tws, C1, C2, C3, C4, C5, h1, tha, Ip3,
T
Dy, Dy, H]

The individual elements of x; are defined as in Table 2.

The linear inequality constraints on Xp are defined by the
relation Agxy, < 0. These linear constraints maintain a non-
increasing blade pre-twist angle, chord length, and thickness
along the blade span. The last row of Ay is defined to ensure
that the rotor radius is smaller than the tower height at the
hub (ensuring no interference between blades and ground).
The lower and upper bounds on the plant design vector xp
are x1 and xy, respectively.

r-r 1.0 0 o0 0 0 0 0 O O 0 0 0 0 07
o-1r 1.0 0 0O O O O O O O O O 0 O

o 0-1r 1.0 0 0 0O O O O O O O 0 O

0 0 0 -1 1 0 0 0 0 0 00 0O O 0 O

o o0 0 0 0-1r 1.0 0 0 O O O O 0 O

A — o o0 o0 o0 0O O0O-1 1 0 O 0O 0O 0O O 0 O
8= o o0 o0 o0 OO O0O-1 1 0 O 0 O O 0 O
o o0 o0 o0 OO o0 O0O~-1 1 0 0O 0 0 0 O

o o0 o0 o0 0O O0 0 0 O O 1I-1 0 0 00

o o0 o0 o0 0O o0 0 O0 o 0 1-1 0 0O

o o0 0 o0 0 0 0 0O O O O O 0O 1-1 0

L 0 0 0 0 0 0 O 0 O0O O O O 0 O % -1

The nonlinear plant inequality constraints gp(-) < 0
enforce limits on stress, strain, and natural frequencies.
Some of the specific constraints in gp(-) include limits on
the mean stress at the base of the tower, as well as limits on
stresses and strains at the blade leading and trailing edges.
It should be noted here that these constraints depend both
on plant design vector as well as system states (and hence
indirectly on control design).

4.2 Blade geometry design

As detailed in Table 1, three elements of blade geome-
try are defined: blade pre-twist distribution along the span,
chord distribution along the span, and thickness along the
span (Sale 2010). Each of these geometric elements is a
function-valued quantity (value depends on position along
the blade span). These functions are represented using
Bézier curves (Zeid 1991), which are each parameterized
using several control points. These control points are used
as the plant design variables for blade geometry. The Bézier
curve for n+ 1 control points can be defined mathematically
as:

C(p) =Y PiBin(p) (12)
i=0
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Table 1 HAWT plant design

vector description Variable Description
twi i"" control point for blade pre—twist angle along the blade span, fori = 1,2 ... 5.
ci i control point for chord length along the blade span, fori = 1,2 ... 5.
thi i control point for thickness along the blade span, fori = 1, 2, 3.
Dy, Hub diameter of the wind turbine blade
D, Rotor diameter of the wind turbine
H, Tower height at the hub.

where, p € [0, 1], P;’s are the control points, and B; ,(p)
is a Bernstein polynomial:

n . .
Bin(p)=—=p'A=p"" i=12 ...n (13)
’ i!ln—1i)!

In addition to these control points, three control points for
the blade circular root are also defined. These control points
are necessary to ensure a circular shape of the blade root
where the blade connects to the rotor hub. The blade geom-
etry is divided into 30 segments along the blade span for
aerodynamic analysis and blade performance evaluation,
providing moderate-fidelity analysis.

4.3 Optimal control

This subsection defines the problem of optimizing system
performance with respect to control design only. Here vari-
able rotor speed control is used (cf. Fig. 4); blade pitch is
assumed to be fixed. The optimal control problem is to max-
imize AE P with respect to the generator torque trajectory
"¢ (¢) over a given finite time horizon (0 < t < ), subject
to differential and algebraic constraints. Adjusting generator
inputs can control generator torque, which in turn influences
rotor speed. The optimal control formulation is:

max AEP(v(t), Py(v))
u(t) = Le(t)
subject to:  gp(§(7), xp,) <0 (14)
A (2, (1), v(£)) — Aopt (2 (2), v(1))|| = 0.
where: £(1) = £(£(1), xp, u(r))

where A(-) = Q,(¢)R,/v(t) is the instantaneous tip—speed
ratio, and R, is the blade length. The AE P (-) here depends
on Py, (1), which in turn depends on Cp(-) that is affected
by the control u(z). In other words, AE P(-) depends on

u(?). From (10) and (14), the dependence of AE P(-) on
both x, and u(?) is clear.

The solution of problem (14) is the open-loop optimal
control strategy. The second constraint above (|| - || = 0,
where || - || is an /; norm) ensures that the actual tip-speed
ratio A(¢) matches the steady-state optimal tip—speed ratio
Aopt(t) over the full time horizon, resulting in attainment
of steady-state optimal power coefficient C, Opt(t). In other
words, this constraint is satisfied if a generator torque tra-
jectory I'g(¢) (the control input) is found that results in a
rotor speed €2, (¢), that matches the optimal reference speed
defined by Aqp(1).

This can be better understood by looking at the drive-
train dynamics which constitute a crucial part of over-
all system dynamics: é(t) = f(-). Assuming a perfectly
rigid drive-train, we can write the single mass dynamic
model (Boukhezzar et al. 2007; Jonkman and Buhl 2005)
as: .

Ji2 (1)

where: J;

Lp(t) — B2 (1) —nlg(2) (15)
Jr + 772-]g
B, = B, + 1B,

where, 7 is the drive-train gear ratio, €2, is the rotor speed,
Jr, Jg, By and By are the rotor inertia, generator inertia,
rotor damping, and generator damping values, respectively.
Wind flowing across the blades produces a torque on the
rotor I',(+). This is resisted by the generator torque I'g(-).
The torque due to wind is:

1
Tr(0) = 5Co(, Bpm Ry v?
_ CpOup) . .
where Co (A, B) = =52 is the torque coefficient. The

difference between rotor and generator torque (accounting
for the drive-train ratio n), results in angular acceleration

Table 2 Description of first 4
system states State

Description

q1
q2
q3
q4

Drive—train torsional compliance DOF
Generator DOF

First fore-aft tower bending-mode DOF

First side-to—side tower bending—mode DOF

@ Springer

www.manaraa.com



24

A. P. Deshmukh, J. T. Allison

or deceleration of the rotor, subject to damping B; in the
drive-train system.

4.4 Co-design formulations

The individual plant and control design problems are
defined above, and now two different co-design formula-
tions can be introduced: nested and simultaneous.

Nested formulation The outer-loop problem of nested for-
mulation is:

max AEP,(v(t), Py(v))
Xp

s.t: Agxp <0
gp(xp) <0
0 <x; <Xp <Xy,

(16)

For each candidate plant design xp considered during
the outer-loop solution process, the inner-loop problem is
solved to identify the optimal control trajectory u,(t) =
g, (¢) and the best possible system performance for each
candidate plant design AE Py:

max AEP(v(t), Py(v))

u(t) = Te(t)
subject to:  gp(§(1),xp,) <0
1A(€2-(2), v(£)) — Aopt (€2 (1), V()| = 0.
where: £(1) = f(£(1), Xp, u(r))

a7

Simultaneous formulation Finally, the simultaneous co-
design formulation is:

max AEP(t), Py(v))
[xp,u(r)]
subject to: Agxp <0
gp(§(1),xp) <0 (18)
A (2 (1), v(£)) — Aopt (1) (€2, (1), v(@))|| = O
0 <x; <Xxp < Xy.
where:  £(1) = £(£(1), Xp, u(r))

andu(?) = Tg(1).

In this case study two operational modes of
FAST (Jonkman and Buhl 2005) are used: 1) Simulation
mode: where the forward simulation of system dynamics
can be performed to obtain the evolution of state trajec-
tories, and 2) Linearization mode: where the linearized
time invariant (but plant dependent) system matrices A (Xp)
and B(xp) are extracted from FAST. The matrices A(-)
and B(-) can be related to system dynamic equations as:
E(t) = FE®). Xp, () ~ A(xp) - £(1) + B(xp) - (1)

The simulation mode is used in structural design por-
tion of the sequential design method (10). The linearization

@ Springer
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AEP Calculation

Fig. 5 Information flow in the co-design problem

mode, however, is used in conjunction with the inner loop
optimal control problem of the nested co-design approach
(17) and the simultaneous co-design problem (18). Figure 5
illustrates how FAST’s linearization mode is used in con-
junction with an optimization algorithm to solve the co-
design problem. Design and state variables (as operating
points), as well as fixed model parameters p, are passed to
FAST from the optimization algorithm. FAST then returns
the power production as a function of wind speed and
constraint function values. Power production information
is then used to compute the objective function value, i.e.
AEP.

Once the system dynamic equations are obtained, Prob-
lems (17) and (18) are then transcribed to a nonlinear
program (NLP) using the Direct Transcription method
explained in Section 3. The resulting NLP is then solved
using the interior-point algorithm of the fmincon solver in
MATLAB®.

5 Results and discussion

The AEP maximization problem was solved for each of the
three formulations: Sequential Design, Nested Co-Design,
and Simultaneous Co-Design. The results are reported in
this section. The simulations were performed for a wind
speed profile based on a Weibull distribution with param-
eters: k = 1.91, 6.80, and a mean wind speed
of Upean = 6.03 m/s. Table 3 shows the optimal plant
design vector xp, for each design formulation. AEP for
both co—design formulations is 3231.5 kW-h (demonstrating
mathematical equivalence), whereas the sequential design
formulation achieved only 2996.9 kW-h. The co-design
solution is 8.03% larger than the sequential design result,
which is a very significant increase (particularly for higher—
capacity turbines). This AEP increase can be attributed to
the ability of co-design to capitalize on the strong inter-
dependence between plant and control design with respect

CcC =
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Table 3 Optimal plant design vector and AEP resulting from each design formulation

Xp, Sequential Nested Simultaneous

Dy, (m) 1.81 2.33 2.33

D, (m) 68.58 69.51 69.51

H; (m) 76.87 76.66 76.66

ty, — CP (deg) [13.72,5.60, 1.40, —1.70, —5.14] [12.17,3.99, —0.53, —3.51, —6.18] [12.17,3.99, —0.53, —3.51, —6.18]
¢ —CP (m) [1.38,1.14, 0.66, 0.55, 0.14] [1.39,1.19, 0.73, 0.68, 0.14] [1.39,1.19, 0.73, 0.68, 0.14]

ty, — CP (m) [0.11,0.25, 0.48] [0.16, 0.48, 0.77] [0.16,0.48, 0.77]

AEP (kW-h) 2996.9 3231.5 3231.5

% AE P Improvement - 8.03 8.03

Total Function Evals 331 713 1259

to AEP. The capability of identifying system-optimal solu-
tions, and corresponding performance improvements, moti-
vate greater utilization of integrated co-design methods in
development of actively controlled engineering systems.
Table 3 lists the number of function evaluations required
for sequential design (331), nested co-design (713), and
simultaneous co-design (1,259).

Plant design variables dictate turbine size, which has
direct impact on energy production capability (cf. (1) and
(3)), but structural constraints are more challenging to sat-
isfy for larger turbines. Co-design helps to balance tradeoffs
such as this to produce better system performance. Physi-
cal system design is tailored to work in concert with control
system dynamics, and control systems can be designed in a
way that makes satisfaction of physical design requirements
easier. For example, the optimal torque trajectory obtained
via co-design not only helps maintain an optimal tip speed
ratio, but also helps to keep structural deflections and stress
more manageable. More specifically, the co-design solution
results in an overall deducting in rotor speed, which helps

reduce structural deflections. Because control design helped
to ease plant constraint satisfaction, there was more flexi-
bility in plant design, supporting the design of a plant that
helped to further improve AEP. These synergistic effects are
only available when plant and control design coupling are
considered explicitly in a design strategy, as is the case with
co-design.

Optimal geometric blade design is critically important
for AEP improvement as it influences power coefficient
characteristics directly. This observation helps to further
explain the effectiveness of co-design strategies. In sequen-
tial design, AEP can only be improved by adjusting blade
geometry during plant design optimization. After plant
optimization, the best result that control optimization can
achieve is to control rotor speed in a way such that
Cp(t) = Cp(Aopt(t), B). In other words, the control opti-
mization problem is simply a trajectory matching problem.
In contrast, when a co-design approach is used, there is an
additional mechanism for increasing AEP. Traversing both
design spaces simultaneously allows us to adjust control

Fig. 6 Optimal blade geometry 20 ; ‘
using control points (shown by é“ — Sequential Design .
x) for sequential design and ; 10~ —Nested/Simultaneous Co-Design [
nested/simultaneous co-design E ok ,
&
A 10 1 1 1 ! 1 !
0 5 10 15 20 25 30
1.5 L3 x T T T 1
E 1+ -
?’5 ’“ P'e x
6 0.5 .
0 1 1 1 | 1 1
0 5 10 15 20 25 30
1 T T T T T T
g
Sosf .
-~
Qo
2
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design in a way that makes possible the exploration of dif-
ferent plant designs with the potential for higher AEP, as
opposed to just funding a control design that enables the tur-
bine to match the optimal power coefficient trajectory. In
other words, in co-design, control design decisions are not
just useful for matching C, (Aopt(?), B), but also changing
Cp(Aopt(?), B) in a way that increases AEP by providing
more flexibility to plant design. Put another way, sequen-
tial design approaches constrain the design space artificially
by fixing plant design before control design is considered,
whereas co-design supports exploration of a much larger
design space through simultaneous plant and control design.

The enhanced flexibility of plant design is observable in
this case study. The blade geometry for sequential and co-
design approaches are fundamentally different, as shown
in Fig. 6 and Table 3. Co-design allows the optimization
algorithm to choose larger blade (34.76 m vs. 34.29 m for
sequential design) and chord lengths compared to sequen-
tial design (cf. Table 3). This results in higher swept area,
better aerodynamic performance, and a resulting increase in
AEP. Larger blades are made possible in co-design because
adjustments to control design make possible the satisfac-
tion of structural constraints (in addition to maintaining an
optimal power coefficient).

The co-design solution provides both the optimal plant
design and optimal open-loop control (rotor speed) trajec-
tories. This optimal speed trajectory can be used as a guide
to design an implementable closed-loop control system that
aims to produce approximately the same performance as
with optimal open-loop control. Bridging the gap between
results generated by co-design with DT and implementable
closed-loop control system design is an important topic
for future work that will help position co-design methods
as practical solutions for integrated design in engineering
practice.

6 Conclusion

This article presented a novel approach for optimizing wind
turbine design using a co-design method to achieve system
optimal solutions. Solution of this problem provides signif-
icant insight via exploration of design alternatives that are
overlooked when using conventional sequential design. The
co-design approaches presented here (nested and simultane-
ous) involve balanced formulations that treat plant design in
a comprehensive manner, including use of nonlinear plant
design constraints and bi-directional coupling. Balanced co-
design is essential for producing more meaningful solutions
to multidisciplinary optimization problems for dynamic sys-
tems. The co-design approaches produced system-optimal

@ Springer

designs that resulted in a performance improvement of more
than eight percent compared to sequential design optimiza-
tion. More importantly, the specific mechanisms that made
these design improvements possible for the wind turbine
design case study were identified and discussed. Applying
co-design to wind turbine design optimization enables the
use of control design to support the satisfaction of challeng-
ing structural constraints. This in turn gives rise to greater
design freedom in the plant design space, leading to larger
blade designs that increase maximum AEP while satisfying
structural constraints.
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